刷题首页
题库
初中数学
题干
如图1,将矩形纸片ABCD沿AC剪开,得到△ABC和△AC
A.
(1)将图1中的△ABC绕点A顺时针旋转∠α,使∠α=∠BAC,得到图2所示的△ABC′,过点C′作C′E∥AC,交DC的延长线于点E,试判断四边形ACEC′的形状,并说明理由.
(2)若将图1中的△ABC绕点A顺时针旋转,使B,A,D在同一条直线上,得到图3所示的△ABC′,连接CC′,过点A作AF⊥CC′于点F,延长AF至点G,使FG=AF,连接CG,C′G,试判断四边形ACGC′的形状,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 09:37:42
答案(点此获取答案解析)
同类题1
四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接C
A.
(1)如图,求证:矩形DEFG是正方形;
(2)若AB=2
,CE=2,求CG的长;
(3)当直线DE与正方形ABCD的某条边所夹锐角是40°时,直接写出∠EFC的度数.
同类题2
如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形连接AC交EF于G,下列结论: ①BE=DF,②∠DAF=15°,③AC⊥EF,④BE+DF=EF,⑤EC=FG;其中正确结论有( )个
A.2
B.3
C.4
D.5
同类题3
如图,点 E 是边长为 1 的正方形 ABCD 的对角线 BD 上的一个动点(不与 B、D 两点重合),过点 E 作直线 MN∥DC,交 AD 于 M,交 BC 于 N,连接 AE,作 EF⊥AE 于 E,交直线 CB 于
A.
(1)如图 1,当点 F 在线段 CB 上时,通过观察或测量,猜想△AEF 的形状,并证明你的猜想;
(2)如图 2,当点 F 在线段 CB 的延长线上时,其它条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由;
(3)在点 E 从点D 向点B 的运动过程中,四边形 AFNM 的面积是否会发生变化?若发生了变化,请说明理由;若没有发生变化,请求出其面积的值.
同类题4
如图,在正方形
ABCD
中,
E
是
DC
边上一点,(与
D
、
C
不重合),连接
AE
,将△
ADE
沿
AE
所在的直线折叠得到△
AFE
,延长
EF
交
BC
于
G
,连接
AG
,作
GH
⊥
AG
,与
AE
的延长线交于点
H
,连接
CH
.显然
AE
是∠
DAF
的平分线,
EA
是∠
DEF
的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.
同类题5
在一堂数学实践课上,赵老师给出了下列问题:
(提出问题)
(1)如图1,在△
ABC
中,
E
是
BC
的中点,
P
是
AE
的中点,就称
CP
是△
ABC
的“双中线”,∠
ACB
=90°,
AC
=3,
AB
=5.则
CP
=
.
(探究规律)
(2)在图2中,
E
是正方形
ABCD
一边上的中点,
P
是
BE
上的中点,则称
AP
是正方形
ABCD
的“双中线”,若
AB
=4.则
AP
的长为
(按图示辅助线求解);
(3)在图3中,
AP
是矩形
ABCD
的“双中线”,若
AB
=4,
BC
=6,请仿照(2)中的方法求出
AP
的长,并说明理由;
(拓展应用)
(4)在图4中,
AP
是平行四边形
ABCD
的“双中线”,若
AB
=4,
BC
=10,∠
BAD
=120°.求出△
ABP
的周长,并说明理由?
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明