刷题首页
题库
高中数学
题干
焦点在
轴上的椭圆
经过点
,椭圆
的离心率为
.
,
是椭圆的左、右焦点,
为椭圆上任意点.
(1)若
面积为
,求
的值;
(2)若点
为
的中点(
为坐标原点),过
且平行于
的直线
交椭圆
于
两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-16 11:14:18
答案(点此获取答案解析)
同类题1
已知椭圆
:
的焦距为4,且点
在椭圆
上,直线
经过椭圆
的左焦点
,与椭圆
交于
两点,且其斜率为
,
为坐标原点,
为椭圆
的右焦点.
(1)求椭圆
的方程;
(2)设
,延长
分别与椭圆
交于
两点,直线
的斜率为
,求证:
为定值.
同类题2
在平面直角坐标系
中,椭圆
的中心为原点,焦点
,
在
轴上,离心率为
.过
的直线
交
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)圆
与
轴正半轴相交于两点
,
(点
在点
的左侧),过点
任作一条直线与椭圆
相交于
,
两点,连接
,
,求证
.
同类题3
已知圆心在
轴上的圆
与直线
切于点
.
(1)求圆
的标准方程;
(2)已知
,经过原点,且斜率为正数的直线
与圆
交于
两点.
(ⅰ)求证:
为定值;
(ⅱ)求
的最大值.
同类题4
已知椭圆
:
经过点
,离心率为
.
(1)求椭圆的方程;
(2)过坐标原点作两条直线
,
,直线
交椭圆于
,
,直线
交椭圆于
,
,且
,直线
,
的斜率分别为
,
,求证:
为定值.
同类题5
在
中,
,且
,若以
为左右焦点的椭圆
经过点
.
(1)求
的标准方程;
(2)设过
右焦点且斜率为
的动直线与
相交于
两点,探究在
轴上是否存在定点
,使得
为定值?若存在,试求出定值和点
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题