刷题首页
题库
高中数学
题干
在平面直角坐标系
xOy
中,点
P
到两点(0,
),(0,
),的距离之和等于4,设点
P
的轨迹为
C
.
(1)求
C
的方程.
(2)设直线
与
C
交于
A
,
B
两点,求弦长|
AB
|,并判断
OA
与
OB
是否垂直,若垂直,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-26 10:42:41
答案(点此获取答案解析)
同类题1
已知椭圆
:
的离心率
,过椭圆的左焦点
且倾斜角为
的直线与圆
相交所得弦长为
.
(1)求椭圆
的方程;
(2)是否存在过点
的直线
与椭圆
交于
两点,且
,若存在,求直线
的方程;若不存在,说明理由.
同类题2
已知椭圆
:
的左,右焦点分别为
,
,且经过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
作一条斜率不为
的直线
与椭圆
相交于
两点,记点
关于
轴对称的点为
.证明:直线
经过
轴上一定点
,并求出定点
的坐标.
同类题3
已知椭圆
的一个焦点与抛物线
的焦点重合,且离心率为
.
(1)求椭圆
的标准方程;
(2)不过原点的直线
与椭圆
交于
,
两点,若三直线
、
、
的斜率与
,
,
点成等比数列,求直线
的斜率及
的值.
同类题4
已知点
是椭圆
E
:
(
)上一点,
F
1
、
F
2
分别是椭圆
E
的左、右焦点,
O
是坐标原点,
轴.
(1)求椭圆
E
的方程;
(2)设
A
、
B
是椭圆
E
上两个动点,
(
,且
).求证:直线
AB
的斜率等于椭圆
E
的离心率;
(3)在(2)的条件下,当
面积取得最大值时,求
的值.
同类题5
设椭圆
的左焦点为
,上顶点为
.已知椭圆的短轴长为4,离心率为
.
(1)求椭圆的方程;
(2)设点
在椭圆上,且异于椭圆的上、下顶点,点
为直线
与
轴的交点,点
在
轴的负半轴上.若
(
为原点),且
,求证:直线
的斜率与直线
MN
的斜率之积为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆中的弦长