刷题首页
题库
高中数学
题干
求适合下列条件的椭圆的标准方程.
(1)经过点
,
;
(2)短轴长为4,离心率为
.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-27 09:58:13
答案(点此获取答案解析)
同类题1
已知椭圆
的长轴长是短轴长的两倍,焦距为
.
(1)求椭圆
的标准方程;
(2)设
是四条直线
所围成的两个顶点,
是椭圆
上的任意一点,若
,求证:动点
在定圆上运动.
同类题2
已知椭圆与双曲线
有相同的焦点坐标,且点
在椭圆上.
(1)求椭圆的标准方程;
(2)设
A
、
B
分别是椭圆的左、右顶点,动点
M
满足
,垂足为
B
,连接
AM
交椭圆于点
P
(异于
A
),则是否存在定点
T
,使得以线段
MP
为直径的圆恒过直线
BP
与
MT
的交点
Q
,若存在,求出点
T
的坐标;若不存在,请说明理由.
同类题3
已知椭圆
的离心率为
,焦距为
。
(1)求椭圆
的方程;
(2)设
为坐标原点,过左焦点
的直线
与椭圆
交于
、
两点,求
的面积的最大值。
同类题4
已知点
在椭圆
上,直线
与x,y轴分别交于A,B两点,0为坐标原点,且△OAB 的面积的最小值为
(1)求椭圆
的离心率;
(2) 设点C、D、F2分别为椭圆
的上、下顶点以及右焦点,E 为线段OD 的中点,直线F2E 与椭圆
相交于M、N 两点,若
,求椭圆
的方程.
同类题5
已知椭圆
的一个焦点与抛物线
的焦点
重合,且椭圆短轴的两个端点与
构成正三角形.
(1)求椭圆的方程;
(2)若过点
的直线
与椭圆交于不同两点
,试问在
轴上是否存在定点
,使
恒为定值? 若存在,求出
的坐标及定值;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程