刷题首页
题库
高中数学
题干
求适合下列条件的椭圆的标准方程.
(1)经过点
,
;
(2)短轴长为4,离心率为
.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-27 09:58:13
答案(点此获取答案解析)
同类题1
(本小题满分13分)已知椭圆
:
的离心率为
,过右焦点
的直线
与
相交于
,
两点,当
的斜率为
时,坐标原点
到
的距离为
.
(1)求椭圆
的标准方程;
(2)
上是否存在点
,使得当
绕
转到某一位置时,有
成立?若存在,求出所有的
的坐标与
的方程;若不存在,说明理由,
同类题2
如图所示,椭圆
M
:
+
=1(
a
>
b
>0)的离心率为
,右准线方程为
x
=4,过点
P
(0,4)作关于
y
轴对称的两条直线
l
1
,
l
2
,且
l
1
与椭圆交于不同两点
A
,
B
,
l
2
与椭圆交于不同两点
D
,
C
.
(1) 求椭圆
M
的方程;
(2) 证明:直线
AC
与直线
BD
交于点
Q
(0,1);
(3) 求线段
AC
长的取值范围.
同类题3
已知椭圆
的离心率为
,若椭圆与圆
:
相交于M,N两点,且圆E在椭圆内的弧长为
.
(1)求椭圆的方程;
(2)过椭圆的上焦点作两条相互垂直的直线,分别交椭圆于A,B、C,D,求证:
为定值.
同类题4
已知椭圆
:
,左焦点是
.
(1)若左焦点
与椭圆
的短轴的两个端点是正三角形的三个顶点,点
在椭圆
上.求椭圆
的方程;
(2)过原点且斜率为
的直线
与(1)中的椭圆
交于不同的两点
,设
,求四边形
的面积取得最大值时直线
的方程;
(3)过左焦点
的直线
交椭圆
于
两点,直线
交直线
于点
,其中
是常数,设
,
,计算
的值(用
的代数式表示).
同类题5
已知椭圆
四个顶点中的三个是边长为
的等边三角形的顶点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与圆
相切且交椭圆
于两点
,求线段
的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程