刷题首页
题库
初中数学
题干
已知,正方形
,
是
延长线上一点,连接
、
,作
中
边上的高
,连接
.
(1)依题意补全图形;
(2)求证:
;
(3)猜想
、
、
之间的数量关系,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-16 05:20:36
答案(点此获取答案解析)
同类题1
如图,边长为
的正方形
中,对角线
相交于点
,点
是
中点,
交
于点
,
于点
,交
于点
.
(1)求证:
≌
;
(2)求线段
的长.
同类题2
(探索发现)
如图①,将
沿中位线
折叠,使点
的对应点
落在
边上,再将
分别沿直线
和直线
折叠,使得
、
的对应点恰好落在点
处,折叠后的三个三角形拼合形成一个四边形
,请判断四边形
的形状.小刚在探索这个问题时发现四边形
是矩形,并展示了如下的证明方法:
证明:∵
是
的中位线,
∴
,
,
由折叠性质可知
,
,
,
,
∴______,
,
∴
,
∴四边形
是平行四边形.
∵______,
∴四边形
是矩形.
(1)请补全小刚的证明过程;
(2)连接
,当
时,直接写出线段
、
、
之间的数量关系:______;
(理解运用)
(3)如图②,在四边形
中,
,
,
,
,
,点
为
边的中点,把四边形
折叠成如图2所示的正方形
,顶点
、
落在点
处,顶点
、
落在线段
上的点
处,求
的长;
(拓展迁移)
如图③,在四边形
中,
,
,
,
,
,沿直线
折叠四边形
,使得点
与点
重合,点
落在
边的点
处,点
为
上一点,再沿直线
折叠四边形
,此时点
与点
恰好重合,得到新的四边形
.
(4)判断四边形
的形状,并说明理由.
同类题3
如图,四边形
ABCD
为矩形,点
E
是边
BC
的中点,
AF
∥
ED
,
AE
∥
DF
(1)求证:四边形
AEDF
为菱形;
(2)试探究:当
AB
:
BC
=
,菱形
AEDF
为正方形?请说明理由.
同类题4
(问题情境)
如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.
(探究展示)
(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.
(2)如图2,若点E是BC的上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.
(拓展延伸)
(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.
同类题5
如图,已知正方形ABCD中,E、F分别是正方形AD、CD边上的点,且∠EBF=45°,对角线AC交BE,BF于M,N,对于以下结论,正确的是( )①AE+CF=FE②△ABE≌△BCF③AM
2
+CN
2
=MN
2
④△EFD的周长等于2AB
A.①②③
B.①②④
C.①③④
D.①②③④
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明