刷题首页
题库
高中数学
题干
已知椭圆
经过点
,
的四个顶点围成的四边形的面积为
.
(1)求
的方程;
(2)过
的左焦点
作直线
与
交于
、
两点,线段
的中点为
,直线
(
为坐标原点)与直线
相交于点
,是否存在直线
使得
为等腰直角三角形,若存在,求出
的方程;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-30 04:54:59
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点
,椭圆
的左,右顶点分别为
.过点
的直线
与椭圆交于
两点,且
的面积是
的面积的3倍.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
与
轴垂直,
是椭圆
上位于直线
两侧的动点,且满足
,试问直线
的斜率是否为定值,请说明理由.
同类题2
已知椭圆
的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
求椭圆
E
的方程;
若
A
是椭圆
E
的左顶点,经过左焦点
F
的直线
l
与椭圆
E
交于
C
,
D
两点,求
与
为坐标原点
的面积之差绝对值的最大值.
已知椭圆
E
上点
处的切线方程为
,
T
为切点
若
P
是直线
上任意一点,从
P
向椭圆
E
作切线,切点分别为
N
,
M
,求证:直线
MN
恒过定点,并求出该定点的坐标.
同类题3
设椭圆的对称中心为坐标原点,其中一个顶点为
,右焦点
与点
的距离为2.
(1)求椭圆的方程;
(2)是否存在经过点
的直线
,使直线
与椭圆相交于不同的两点
,
满足
?若存在,求出直线
的方程;若不存在,请说明理由.
同类题4
设椭圆
的右焦点为
,右顶点为
,且
,其中
为坐标原点,
为椭圆的离心率.
(1)求
的方程;
(2)设过
且斜率不为零的直线
与
交于
,
两点,过
作直线
的垂线,垂足为
,
证明:直线
恒过一定点,并求出该定点的坐标.
同类题5
已知椭圆的焦点为
,
,(
),
为椭圆上一点,且
是
,
的等差中项.
(1)求椭圆方程;
(2)如果点
在第二象限且
,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定直线