刷题首页
题库
高中数学
题干
若椭圆
的焦点在
轴上,过点(1,
)作圆
的切线,切点分别为A,B,直线
恰好经过椭圆的右焦点和上顶点,则椭圆方程是
上一题
下一题
0.99难度 填空题 更新时间:2020-02-15 10:21:56
答案(点此获取答案解析)
同类题1
如图,已知
,
是椭圆
的左右焦点,
为椭圆
的上顶点,点
在椭圆
上,直线
与
轴的交点为
,
为坐标原点,且
,
.
(1)求椭圆
的方程;
(2)过点
作两条互相垂直的直线分别与椭圆
交于
,
两点(异于点
),证明:直线
过定点,并求该定点的坐标.
同类题2
已知椭圆C:
(
)的离心率为
,
,
,
,
的面积为1.
(1)求椭圆C的方程;
(2)斜率为2的直线与椭圆交于
、
两点
,求直线
的方程;
(3)在
轴上是否存在一点
,使得过点
的任一直线与椭圆若有两个交点
、
则都有
为定值?若存在,求出点
的坐标及相应的定值.
同类题3
已知椭圆
的左、右焦点分别为
、
.经过点
且倾斜角为
的直线
与椭圆
交于
、
两点(其中点
在
轴上方),
的周长为8.
(1)求椭圆
的标准方程;
(2)如图,把平面
沿
轴折起来,使
轴正半轴和
轴确定的半平面,与
负半轴和
轴所确定的半平面互相垂直.
①若
,求异面直线
和
所成角的大小;
②若折叠后
的周长为
,求
的大小.
同类题4
已知椭圆
C
:
的焦距为2,以椭圆短轴为直径的圆经过点
,椭圆的右顶点为
A
.
求椭圆
C
的方程;
过点
的直线
l
与椭圆
C
相交于两个不同的交点
P
,
Q
,记直线
AP
,
AQ
的斜率分别为
,
,问
是否为定值?并证明你的结论.
同类题5
已知椭圆
的右焦点为
,左,右顶点分别为
,离心率为
,且过点
.
(1)求
的方程;
(2)设过点
的直线
交
于
,
(异于
)两点,直线
的斜率分别为
.若
,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程