刷题首页
题库
初中数学
题干
如图,正方形
的顶点
是坐标原点,边
和
分别在
轴、
轴上,点
的坐标为
.直线
经过点
,与边
交于点
,过点
作直线
的垂线,垂足为
,交
轴于点
.
(1)如图1,当
时,求直线
对应的函数表达式;
(2)如图2,连接
,求证:
平分
.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-17 11:40:08
答案(点此获取答案解析)
同类题1
如图1,我们把对角线互相垂直的四边形叫做对垂四边形.
观察发现:如图1,对垂四边形
四边存在数量为:
.
发现应用:(1)如图2,若
,
是
的中线,
,垂足为
,
,
,求
______.
知识应用:(2)如图3,分别以
的直角边
和斜边
为边向外作正方形
和正方形
,连接
,
,
,已知
,
,求
的长.
拓展应用:(3)如图4,在
中,点
、
、
分别是
,
,
的中点,
,
,
,求
的长.
同类题2
如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
(1)、如图a,求证:△BCP≌△DCQ;
(2)、如图,延长BP交直线DQ于点E.
①如图b,求证:BE⊥DQ;
②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
同类题3
如图,已知四边形ABCD为正方形,AB=
,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接C
A.
(1)求证:矩形DEFG是正方形(提示:可过E作EM⊥BC于M点,过E作EN⊥CD于N点,证△EMF≌△END);
(2)CE+CG的值是否为定值?若是,请写出这个定值(直接写出结果即可);若不是,请说明理由。
同类题4
如图,正方形
ABCD
,将边
BC
绕点
B
逆时针旋转60°,得到线段
BE
,连接
AE
,
CE
.
(1)求∠
BAE
的度数;
(2)连结
BD
,延长
AE
交
BD
于点
F
.
①求证:
DF=EF
;
②直接用等式表示线段
AB
,
CF
,
EF
的数量关系.
同类题5
如图,在正方形
ABCD
中,点
E
、
F
分别在
BC
、
CD
上,△
AEF
是等边三角形,连接
AC
交
EF
于点
G
,下列结论:①
;②AG=
GC;③
BE
+
DF
=
EF
;④
.其中正确的是( )
A.①②③
B.①③④
C.①②④
D.①②③④
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明