刷题首页
题库
高中数学
题干
已知椭圆
的右焦点是抛物线
的焦点,直线
与
相交于不同的两点
.
(1)求
的方程;
(2)若直线
经过点
,求
的面积的最小值(
为坐标原点);
(3)已知点
,直线
经过点
,
为线段
的中点,求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-27 11:57:08
答案(点此获取答案解析)
同类题1
已知中心在原点的椭圆
和抛物线
有相同的焦点
,椭圆
过点
,抛物线
的顶点为原点.
求椭圆
和抛物线
的方程;
设点
P
为抛物线
准线上的任意一点,过点
P
作抛物线
的两条切线
PA
,
PB
,其中
A
,
B
为切点.
设直线
PA
,
PB
的斜率分别为
,
,求证:
为定值;
若直线
AB
交椭圆
于
C
,
D
两点,
,
分别是
,
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
同类题2
点 M是抛物线C:y2=2px(p>0)上一点,F是抛物线焦点,
=60°,|FM|=4.
(1)求抛物线C方程;
(2)D(﹣1,0),过F的直线l交抛物线C与A、B两点,以F为圆心的圆F与直线AD相切,试判断并证明圆F与直线BD的位置关系.
同类题3
已知双曲线
:
的离心率为2.若抛物线
的焦点到双曲线
的渐近线的距离为2,则抛物线
的方程为
A.
B.
C.
D.
同类题4
在平面直角坐标系
中,已知抛物线
上一点
到准线的距离与到原点
的距离相等,抛物线的焦点为
.
(1)求抛物线的方程;
(2)若
为抛物线上一点(异于原点
),点
处的切线交
轴于点
,过
作准线的垂线,垂足为点
.试判断四边形
的形状,并证明你的结论.
同类题5
已知椭圆
的离心率为
,焦距为
,抛物线
的焦点
F
是椭圆
的顶点.
(1)求
与
的标准方程;
(2)
上不同于
F
的两点
P
,
Q
满足以
PQ
为直径的圆经过
F
,且直线
PQ
与
相切,求
的面积.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据焦点或准线写出抛物线的标准方程
抛物线中的参数范围问题