刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,焦距为
,抛物线
的焦点
F
是椭圆
的顶点.
(1)求
与
的标准方程;
(2)
上不同于
F
的两点
P
,
Q
满足以
PQ
为直径的圆经过
F
,且直线
PQ
与
相切,求
的面积.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-16 09:38:20
答案(点此获取答案解析)
同类题1
已知椭圆
:
(
)的左、右焦点分别为
,过点
作直线
与椭圆
交于
两点.
(1)已知
,椭圆
的离心率为
,直线
交直线
于点
,求
的周长及
的面积;
(2)当
且点
在第一象限时,直线
交
轴于点
,
,证明:点
在定直线上.
同类题2
已知中心在原点
,焦点在
轴上的椭圆
过点
,离心率为
.
(1)求椭圆
的方程;
(2)设过定点
的直线
与椭圆
交于不同的两点
,且
,求直线
的斜率
的取值范围;
同类题3
已知椭圆
:
的离心率为
,椭圆的四个顶点构成的四边形面积为
.
(1)求椭圆
的方程;
(2)若
是椭圆上的一点,过
且斜率等于
的直线与椭圆
交于另一点
,点
关于原点的对称点为
.求
面积的最大值及取最大值时直线
的方程.
同类题4
已知椭圆
的右焦点为
,且离心率为
,
的三个顶点都在椭圆
上,设
三条边
的中点分别为
,且三条边所在直线的斜率分别为
,且
均不为0.
为坐标原点,若直线
的斜率之和为1.则
__________.
同类题5
设椭圆
的左、右焦点分别为
,
,离心率为
,过点
的直线
交椭圆
于点
,
(不与左右顶点重合),连接
,已知
的周长为8.
(1)求椭圆
的方程;
(2)设
,若
,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据焦点或准线写出抛物线的标准方程