刷题首页
题库
高中数学
题干
已知直线x=﹣2上有一动点Q,过点Q作直线l,垂直于y轴,动点P在l
1
上,且满足
(O为坐标原点),记点P的轨迹为
A.
(1)求曲线C的方程;
(2)已知定点M(
,0),N(
,0),点A为曲线C上一点,直线AM交曲线C于另一点B,且点A在线段MB上,直线AN交曲线C于另一点D,求△MBD的内切圆半径r的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 02:11:27
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,过点
的椭圆
的两条切线相互垂直.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在椭圆
上是否存在这样的点
,过点
引抛物线
的两条切线
,切点分别为
,且直线
过点
?若存在,指出这样的点
有几个(不必求出点的坐标);若不存在,请说明理由.
同类题2
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
同类题3
已知圆N:
和抛物线C:
,圆的切线l与抛物线C交于不同的两点A,B,
(1)当直线l的斜率为1时,求线段AB的长;
(2)设点M和点N关于直线y=x对称,问是否存在直线l使得
?若存在,求出直线l的方程;若不存在,请说明理由.
同类题4
已知椭圆
的左右焦点为
,
是椭圆上半部分的动点,连接
和长轴的左右两个端点所得两直线交
正半轴于
两点(点
在
的上方或重合).
(1)当
面积
最大时,求椭圆的方程;
(2)当
时,在
轴上是否存在点
使得
为定值,若存在,求
点的坐标,若不存在,说明理由.
同类题5
给出下列说法:①方程
表示的图形是一个点;②命题“若
,则
或
”为真命题;③已知双曲线
的左右焦点分别为
,
,过右焦点
被双曲线截得的弦长为4的直线有3条;④已知椭圆
上有两点
,
,若点
是椭圆
上任意一点,且
,直线
,
的斜率分别为
,
,则
为定值
.
其中说法正确的序号是________.
相关知识点
平面解析几何
圆锥曲线
求平面轨迹方程
抛物线中的参数范围问题