刷题首页
题库
高中数学
题干
椭圆以坐标轴为对称轴,经过点(3,0),且长轴长是短轴长的2倍,则椭圆的标准方程为( )
A.
B.
C.
或
D.
或
上一题
下一题
0.99难度 单选题 更新时间:2020-02-12 10:14:00
答案(点此获取答案解析)
同类题1
已知圆
:
,椭圆
:
的离心率为
,圆
上任意一点
处的切线交椭圆
于两点
,
,当
恰好位于
轴上时,
的面积为
.
(1)求椭圆
的方程;
(2)试判断
是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
同类题2
已知椭圆
过点
,左、右焦点分别为
,离心率为
,经过
的直线
与圆心在
轴上且经过点
的圆
恰好相切于点
.
(1)求椭圆
及圆
的方程;
(2) 在直线
上是否存在一点
,使
为以
为底边的等腰三角形?若存在,求点
的坐标,否则说明理由.
同类题3
设椭圆
的离心率
,椭圆上的点到左焦点
的距离的最大值为3.
(1)求椭圆
的方程;
(2)求椭圆
的外切矩形
的面积
的取值范围.
同类题4
已知A、B分别是椭圆
的左、右顶点,P为椭圆C的下顶点,F为其右焦点
点M是椭圆C上异于A、B的任一动点,过点A作直线
轴
以线段AF为直径的圆交直线AM于点A、N,连接FN交直线l于点
点G的坐标为
,且
,椭圆C的离心率为
.
求椭圆C的方程;
试问在x轴上是否存在一个定点T,使得直线MH必过该定点T?若存在,求出点T的坐标,若不存在,说明理由.
同类题5
已知椭圆
的离心率为
,
是椭圆
的一个焦点.点
,直线
的斜率为
.
(1)求椭圆
的方程;
(2)若过点
的直线
与椭圆
交于
两点,线段
的中点为
,且
.求
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程