刷题首页
题库
高中数学
题干
已知抛物线
的焦点为
,
为坐标原点,
是抛物线
上异于
的两点.
(1)求抛物线
的方程;
(2)若直线
的斜率之积为
,求证:直线
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-13 03:29:58
答案(点此获取答案解析)
同类题1
已知
是抛物线
的焦点,恰好又是双曲线
的右焦点,双曲线
过点
,且其离心率为
.
(1)求抛物线
和双曲线
的标准方程;
(2)已知直线
过点
,且与抛物线
交于
,
两点,以
为直径作圆
,设圆
与
轴交于点
,
,求
的最大值.
同类题2
若抛物线
的焦点为
,则
的值为( )
A.
B.
C.2
D.4
同类题3
已知抛物线
的焦点为
,过点
且与
轴不垂直的直线
与抛物线交于点
,且
.
(1)求抛物线的方程;
(2)设直线
与
轴交于点
,试探究:线段
与
的长度能否相等?如果相等,求直线
的方程,如果不等,说明理由.
同类题4
已知点
为抛物线
的焦点,点
在抛物线
上,且
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)已知点
,延长
交抛物线
于点
,证明:以点
为圆心且与直线
相切的圆,必与直线
相切.
同类题5
已知抛物线
,焦点为
,定点
.若点
M
,
N
是抛物线
C
上的两相异动点,
M
,
N
不关于
y
轴对称,且满足
,则直线
MN
恒过的定点的坐标为_________.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据焦点或准线写出抛物线的标准方程
抛物线中的直线过定点问题