刷题首页
题库
高中数学
题干
已知抛物线
:
的焦点为
,准线方程是
.
(1)求抛物线
的方程;
(2)过点
且倾斜角为
的直线
与抛物线
交于
,
两点,求
;
(3)设点
在抛物线
上,且
,求
的面积(
为坐标原点).
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 03:10:54
答案(点此获取答案解析)
同类题1
抛物线M:
的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x
1
,点C的横坐标为x
2
,曲线M上点D的横坐标为x
1
+2,求直线CD的斜率.
同类题2
抛物线
上一点
到抛物线准线的距离为
,点
关于
轴的对称点为
,
为坐标原点,
的内切圆与
切于点
,点
为内切圆上任意一点.
(Ⅰ)求抛物线方程;
(Ⅱ)求
的取值范围.
同类题3
给定直线
,抛物线
,且抛物线
的焦点在直线
上.
(1)求抛物线
的方程
(2)若
的三个顶点都在抛物线
上,且点
的纵坐标
,
的重心恰是抛物线
的焦点
,求直线
的方程.
同类题4
已知抛物线
的焦点
与椭圆
的右焦点重合,抛物线
的准线与
轴的交点为
,过
作直线
与抛物线
相切,切点为
,则
的面积为( )
A.32
B.16
C.8
D.4
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据焦点或准线写出抛物线的标准方程
利用焦半径公式解决直线与抛物线交点问题