刷题首页
题库
高中数学
题干
已知A为焦距为
的椭圆E:
(
a
>b>0)的右顶点,点P(0,
),直线PA交椭圆E于点B,
.
(1)求椭圆E的方程;
(2)设过点P且斜率为
的直线
与椭圆E交于M、N两点(M在P、N之间),若四边形MNAB的面积是△PMB面积的5倍.求直线
的斜率
.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-19 10:16:48
答案(点此获取答案解析)
同类题1
已知直线
所经过的定点
恰好是椭圆
的一个焦点,且椭圆
上的点到点
的最大距离为
.
(1)求椭圆
的标准方程;
(2)已知圆
,直线
.试证明当点
在椭圆
上运动时,直线
与圆
恒相交;并求直线
被圆
所截得的弦长的取值范围.
同类题2
已知椭圆
的离心率为
,且过点
,若点
在椭圆
C
上,则点
称为点
M
的一个“椭点”.
(1)求椭圆
C
的标准方程;
(2)若直线
与椭圆
C
相交于
A
,
B
两点,且
A
,
B
两点的“椭点”分别为
P
,
Q
,以
PQ
为直径的圆经过坐标原点,试判断
的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
同类题3
在直角坐标系
中,已知椭圆
的上顶点坐标为
,离心率为
.
(1)求椭圆的标准方程;
(2)若椭圆上的点
的横坐标为
,且位于第一象限,点
关于
轴的对称点为点
,
是位于直线
异侧的椭圆上的动点.
①若直线
的斜率为
,求四边形
面积的最大值;
②若动点
满足
,试探求直线
的斜率是否为定值?说明理由.
同类题4
已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为
。
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当点P在椭圆上运动时,求证:以BD为直径的圆与直线PF恒相切.
同类题5
已知椭圆
的离心率为
,其左,右焦点分别为
,
,点
P
是坐标平面内一点,且
,
,其中
O
为坐标原点.
(1)求椭圆
C
的方程;
(2)过点
,且斜率为
的动直线
l
交椭圆于
A
,
B
两点,求弦
AB
的垂直平分线在
轴上截距的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积