刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,其左,右焦点分别为
,
,点
P
是坐标平面内一点,且
,
,其中
O
为坐标原点.
(1)求椭圆
C
的方程;
(2)过点
,且斜率为
的动直线
l
交椭圆于
A
,
B
两点,求弦
AB
的垂直平分线在
轴上截距的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-01 09:43:10
答案(点此获取答案解析)
同类题1
与双曲线
1有相同的焦点,且离心率为
的椭圆的标准方程为_____.
同类题2
如图,在平面直角坐标系
xOy
中,已知椭圆
C
1
:
+
y
2
=1,椭圆
C
2
:
+
=1(
a
>
b
>0),
C
2
与
C
1
的长轴长之比为
∶1,离心率相同.
(1) 求椭圆
C
2
的标准方程;
(2) 设点
P
为椭圆
C
2
上的一点.
①射线
PO
与椭圆
C
1
依次交于点
A
,
B
,求证:
为定值;
②过点
P
作两条斜率分别为
k
1
,
k
2
的直线
l
1
,
l
2
,且直线
l
1
,
l
2
与椭圆
C
1
均有且只有一个公共点,求证
k
1
·
k
2
为定值.
同类题3
设
分别是椭圆
的左、右焦点,过
作倾斜角为
的直线交椭圆
于
两点,
到直线
的距离为
,连接椭圆
的四个顶点得到的菱形面积为
.
(1)求椭圆
的方程;
(2)设过点
的直线
被椭圆
和圆
所截得的弦长分别为
,当
最大时,求直线
的方程.
同类题4
已知椭圆
的左、右焦点
在
轴上,中心在坐标原点,长轴长为4,短轴长为
.
(1)求椭圆的标准方程;
(2)是否存在过
的直线
,使得直线
与椭圆
交于
,
?若存在,请求出直线
的方程;若不存在,请说明理由.
同类题5
已知椭圆
长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线
过点
,且与椭圆相交于另一点
.
(1)求椭圆的方程;
(2)若线段
长为
,求直线
的倾斜角;
(3)点
在线段
的垂直平分线上,且
,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程