刷题首页
题库
高中数学
题干
已知椭圆
与双曲线
有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-02-23 06:15:51
答案(点此获取答案解析)
同类题1
已知以椭圆
:
的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.
(1)求椭圆
的方程;
(2)直线
:
与椭圆
交于异于椭圆顶点的
,
两点,
为坐标原点,直线
与椭圆
的另一个交点为
点,直线
和直线
的斜率之积为1,直线
与
轴交于点
.若直线
,
的斜率分别为
,
,试判断
是否为定值,若是,求出该定值;若不是,说明理由.
同类题2
设点
、
分别是椭圆
的左、右焦点,
为椭圆
上任意一点,且
的最小值为
.
(1)求椭圆
的方程;
(2)设直线
(直线
、
不重合),若
、
均与椭圆
相切,试探究在
轴上是否存在定点
,使点
到
、
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
同类题3
已知椭圆
的左、右焦点分别为
,离心率为
,且
在椭圆
上运动,当点
恰好在直线
l
:
上时,
的面积为
.
(1)求椭圆
的方程;
(2)作与
平行的直线
,与椭圆交于
两点,且线段
的中点为
,若
的斜率分别为
,求
的取值范围.
同类题4
已知椭圆
:
的离心率为
,且经过点
,
为椭圆
的左焦点.直线
:
与椭圆
交于
,
两点.
(1)求椭圆
的标准方程;
(2)求
的面积.
同类题5
设椭圆
的左焦点为
,且椭圆经过点
.
(1)求椭圆的方程;
(2)设点
在椭圆上,且异于椭圆的上、下顶点,点
为直线
(
为椭圆上顶点)与
轴的交点,点
在
轴的负半轴上.若
(
为原点),且
,求直线
的斜率.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求双曲线的焦点坐标