刷题首页
题库
高中数学
题干
平面直角坐标系
中,椭圆C:
的离心率是
,抛物线E:
的焦点F是C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线
与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线
与y轴交于点G,记
的面积为
,
的面积为
,求
的最大值及取得最大值时点P的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-28 02:48:30
答案(点此获取答案解析)
同类题1
已知
F
1
、
F
2
分别是椭圆
C
:
的左焦点和右焦点,
O
是坐标系原点,且椭圆
C
的焦距为6,过
F
1
的弦
AB
两端点
A
、
B
与
F
2
所成△
ABF
2
的周长是
.
(Ⅰ)求椭圆
C
的标准方程;
(Ⅱ)已知点
P
(
x
1
,
y
1
),
Q
(
x
2
,
y
2
)是椭圆
C
上不同的两点,线段
PQ
的中点为
M
(2,1),求直线
PQ
的方程.
同类题2
已知椭圆
的左右焦点分别为
和
,离心率
,连接椭圆的四个顶点所得四边形的面积为
.
(1)求椭圆C的标准方程;
(2)设A,B是直线
上的不同两点,若
,求
的最小值
同类题3
已知椭圆
:
,左焦点是
.
(1)若左焦点
与椭圆
的短轴的两个端点是正三角形的三个顶点,点
在椭圆
上.求椭圆
的方程;
(2)过原点且斜率为
的直线
与(1)中的椭圆
交于不同的两点
,设
,求四边形
的面积取得最大值时直线
的方程;
(3)过左焦点
的直线
交椭圆
于
两点,直线
交直线
于点
,其中
是常数,设
,
,计算
的值(用
的代数式表示).
同类题4
求分别满足下列条件的椭圆的标准方程.
(1)经过
,
两点;
(2)短轴长为10,离心率为
.
同类题5
已知椭圆
(
)的焦距为
,且过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点
,设
为椭圆
上位于第三象限内一动点,直线
与
轴交于点
,直线
与
轴交于点
,求证:四边形
的面积为定值,并求出该定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积