刷题首页
题库
高中数学
题干
已知:椭园
过点
直线倾斜角为
原点到该直线的距离为
(1)求椭圆的方程;
(2)斜率大于零的直线过
D
(-1,0)与椭圆交于
E
、
F
两点,若
求直线
EF
的方程;
(3)是否存在实数
直线
交椭园于
P
、
Q
两点,以
PQ
为直径的圆过点
D
(-1,0)?若存在,求出
的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-13 09:56:14
答案(点此获取答案解析)
同类题1
已知
、
是椭圆
(
)的左、右焦点,过
作
轴的垂线与
交于
、
两点,
与
轴交于点
,
,且
,
为坐标原点.
(1)求
的方程;
(2)设
为椭圆
上任一异于顶点的点,
、
为
的上、下顶点,直线
、
分别交
轴于点
、
.若直线
与过点
、
的圆切于点
.试问:
是否为定值?若是,求出该定值;若不是,请说明理由。
同类题2
已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线
E
:
的焦点重合,斜率为
k
的直线
l
交抛物线
E
于
A
、
B
两点,交椭圆
于
C
、
D
两点.
(1)求椭圆
的方程;
(2)直线
l
经过点
,设点
,且
的面积为
,求
k
的值;
(3)若直线
l
过点
,设直线
,
的斜率分别为
,
,且
,
,
成等差数列,求直线
l
的方程.
同类题3
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为长为半径的圆与直线
相切,过点
的直线
与椭圆
相交于
两点.
(1)求椭圆
的方程;
(2)若原点
在以线段
为直径的圆内,求直线
的斜率
的取值范围.
同类题4
设点
、
分别是椭圆
的左、右焦点,
为椭圆
上任意一点,且
的最小值为
.
(1)求椭圆
的方程;
(2)设直线
(直线
、
不重合),若
、
均与椭圆
相切,试探究在
轴上是否存在定点
,使点
到
、
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
同类题5
已知椭圆
C
:
的离心率为
,其两个顶点和两个焦点构成的四边形面积为
.
(1)求椭圆
C
的方程;
(2)过点
的直线
l
与椭圆
C
交于
A
,
B
两点,且点
M
恰为线段
AB
的中点,求直线
l
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程