刷题首页
题库
高中数学
题干
已知:椭园
过点
直线倾斜角为
原点到该直线的距离为
(1)求椭圆的方程;
(2)斜率大于零的直线过
D
(-1,0)与椭圆交于
E
、
F
两点,若
求直线
EF
的方程;
(3)是否存在实数
直线
交椭园于
P
、
Q
两点,以
PQ
为直径的圆过点
D
(-1,0)?若存在,求出
的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-13 09:56:14
答案(点此获取答案解析)
同类题1
已知椭圆
左右焦点为
,左顶点为
A
(-2.0),上顶点为
B
,且∠
=
.
(1)求椭圆C的方程;
(2)探究
轴上是否存在一定点
P
,过点
P
的任意直线与椭圆交于
M
、
N
不同的两点,
M
、
N
不与点
A
重合,使得
为定值,若存在,求出点P;若不存在,说明理由.
同类题2
椭圆的焦点分别为(0,
)和(0,-
),直线y=3x-2截椭圆的弦的中点横坐标为
,求此椭圆方程.
同类题3
已知椭圆
的离心率为
,左、右焦点分别为
,
,焦距为6.
(1)求椭圆
的方程.
(2)过椭圆左顶点的两条斜率之积为
的直线分别与椭圆交于
点.试问直线
是否过某定点?若过,求出该点的坐标;若不过,请说明理由.
同类题4
如图,已知椭圆
E
的右焦点为
,
P
.
Q
为椭圆上的两个动点,
周长的最大值为8.
(1)求椭圆
E
的标准方程;
(2)记椭圆
E
的左焦点为
,过
作直线
l
与椭圆交于不同两点
M
.
N
,
求
面积取最大值时的直线
l
方程.
同类题5
已知椭圆
的中心在坐标原点,焦点在
轴上,离心率为
,椭圆
上的点到焦点距离的最大值为
.
(1)求椭圆
的标准方程;
(2)若过点
的直线
与椭圆
交于不同的两点
,且
,求实数
的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程