刷题首页
题库
高中数学
题干
已知在直四棱柱
中,
AD
∥
BC
,
AB
⊥
BC
,
,
AB
=1,
,
为
的中点,平面
与平面
所成的锐二面角的余弦值为
.
(1)求证:
;
(2)若点
是棱
上的点,且三棱锥
的体积为
,求直线
和平面
所成角的正弦值的大小.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-06 05:48:53
答案(点此获取答案解析)
同类题1
已知棱长为
的正方体
中,
是
的中点,
为
的中点.
(1)求证:
;
(2)求异面直线
与
所成角的余弦值.
同类题2
如图,在正三棱柱
中,
,
,
为
的中点.
(Ⅰ)证明:
面
;
(Ⅱ)求二面角
的大小.
同类题3
如图,在长方体
中,
,点
为线段
上的动点(包含线段端点),则下列结论正确的__________.
①当
时,
平面
;
②当
时,
平面
;
③
的最大值为
;
④
的最小值为
.
同类题4
如图所示,四棱锥
的底面为直角梯形,
,
,
,
,
底面
,
为
的中点.
(Ⅰ)求证:平面
平面
(Ⅱ)求直线
与平面
所成的角的正弦值.
同类题5
给出下列命题:
① 直线
的方向向量为
,直线
的方向向量为
,则
与
垂直.
②直线
的方向向量为
,平面
的法向量为
,则
.
③平面
、
的法向量分别为
,
,则
.
④平面
经过三点
,
,
,向量
是平面
的法向量,则
.
其中真命题的序号是________.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明