刷题首页
题库
高中数学
题干
如图:在四棱锥
中,
平面
,底面
是正方形,
.
(1)求异面直线
与
所成角的大小(结果用反三角函数值表示);
(2)求点
、
分别是棱
和
的中点,求证:
平面
.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-07 03:05:12
答案(点此获取答案解析)
同类题1
如图所示,四棱柱
ABCD
-
A
1
B
1
C
1
D
1
中,底面为平行四边形,以顶点
A
为端点的三条棱长都为1,且两两夹角为60°.
(1)求
AC
1
的长;
(2)求证:
AC
1
⊥
BD
;
(3)求
BD
1
与
AC
夹角的余弦值.
同类题2
给出下列命题:
① 直线
的方向向量为
,直线
的方向向量为
,则
与
垂直.
②直线
的方向向量为
,平面
的法向量为
,则
.
③平面
、
的法向量分别为
,
,则
.
④平面
经过三点
,
,
,向量
是平面
的法向量,则
.
其中真命题的序号是________.
同类题3
如图,正四棱柱
中,设
,
,
若棱
上存在点
满足
平面
,求实数
的取值范围
同类题4
如图,在三棱锥
中,
底面
ABC
,
点
D
,
E
分别为棱
PA
,
PC
的中点,
M
是线段
AD
的中点,
N
是线段
BC
的中点,
,
.
Ⅰ
求证:
平面
BDE
;
Ⅱ
求直线
MN
到平面
BDE
的距离;
Ⅲ
求二面角
的大小.
同类题5
如图,在长方体
中,
,
,点
、
分别为
、
的中点.
(1)证明:
平面
;
(2)求二面角
的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明