刷题宝
  • 刷题首页
题库 高中数学

题干

如图所示,正方体中,M、N、E、F分别是棱,,,的中点,用空间向量方法证明:平面AMN∥平面EFDB.
上一题 下一题 0.99难度 解答题 更新时间:2016-02-15 11:03:52

答案(点此获取答案解析)

同类题1

如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=1,AB=2a(a>0),E,F分别CD、PB的中点.
(Ⅰ)求证:EF⊥平面PAB;,
(Ⅱ)当时,求AC与平面AEF所成角的正弦值.

同类题2

如图,在四棱锥中,底面,且底面为正方形, 分别为的中点.

(1)求证:平面;
(2)求平面和平面的夹角

同类题3

已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.

(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

同类题4

如图,在正方体中,分别是的中点。

(1)求异面直线与所成角的余弦值;
(2)棱上是否存在点,使得平面?请证明你的结论。

同类题5

如图,在四棱锥中,已知平面,且四边形为直角梯形,,,点,分别是,的中点.

 

(1)求证:平面;
(2)若点为棱上一点,且平面平面, 求证:
相关知识点
  • 空间向量与立体几何
  • 空间向量与立体几何
  • 空间向量的应用
  • 空间位置关系的向量证明
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)