刷题首页
题库
高中数学
题干
已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=
BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且
,
,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2014-05-04 01:56:15
答案(点此获取答案解析)
同类题1
在底面是正三角形、侧棱垂直于底面的三棱柱
ABC
﹣
A
1
B
1
C
1
中,底面边长为
a
,侧棱长为2
a
,点
M
是
A
1
B
1
的中点.
(1)证明:
MC
1
⊥
AB
1
.
(2)求直线
AC
1
与侧面
BB
1
C
1
C
所成角的正弦值.
同类题2
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过动点
,法向量为
的直线的点法式方程为
,化简得
,类比上述方法,在空间直角坐标系中,经过点
,且法向量为
的平面的点法式方程应为( )
A.
B.
C.
D.
同类题3
直线2x﹣3y+1=0的一个方向向量是()
A.(2,﹣3)
B.(2,3)
C.(﹣3,2)
D.(3,2)
同类题4
已知直线
l
的倾斜角为
q
,则直线
l
的一个方向向量为_______________.
同类题5
在平面直角坐标系中,若
为坐标原点,则
、
、
三点在同一直线上的充要条件为存在唯一的实数
,使得
成立,此时称实数
为“向量
关于
和
的终点共线分解系数”.若已知
、
,且向量
是直线
的法向量,则“向量
关于
和
的终点共线分解系数”为
.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
直线的方向向量
直线方向向量的概念及辨析
求直线的方向向量