刷题首页
题库
高中数学
题干
如图,在三棱锥
中,
平面
,
,
、
、
分别为棱
、
、
的中点,
,
(1)求证:
;
(2)求直线
与平面
所成角正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2012-02-01 08:14:55
答案(点此获取答案解析)
同类题1
如图,一个结晶体的形状为平行六面体
,其中,以顶点
A
为端点的三条棱长都相等,且它们彼此的夹角都是60°,下列说法中正确的是( )
A.
B.
C.向量
与
的夹角是60°
D.
与
AC
所成角的余弦值为
同类题2
如图:已知三棱锥
中,
面
,
,
,
为
上一点,
,
分别为
的中点.
(1)证明:
.
(2)求面
与面
所成的锐二面角的余弦值.
(3)在线段
(包括端点)上是否存在一点
,使
平面
?若存在,确定
的位置;若不存在,说明理由.
同类题3
已知正方形
和矩形
所在的平面互相垂直,
,点
在线段
上.
(Ⅰ)若
为
的中点,求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)证明:存在点
,使得
平面
,并求
的值.
同类题4
已知平面
的一个法向量为
,
,则直线
AB
与平面
的位置关系为( )
A.
B.
C.相交但不垂直
D.
同类题5
在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)求异面直线AE与CD所成角的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明