刷题首页
题库
高中数学
题干
用空间向量解决下列问题:如图,在斜三棱柱
中,
是
的中点,
⊥平面
,
,
.
(1)求证:
;
(2)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-17 09:42:41
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,
底面
,
,
,
,
,
为棱
上的一点,平面
平面
.
(Ⅰ)证明:
;
(Ⅱ)求二面角
的大小.
同类题2
如图所示,平面
PAD
⊥平面
ABCD
,
ABCD
为正方形,△
PAD
是直角三角形,且
PA
=
AD
=2,
E
,
F
,
G
分别是线段
PA
,
PD
,
CD
的中点.求证:
PB
∥平面
EFG
.
同类题3
如图,在四棱锥
中,底面
ABCD
是直角梯形,侧棱
底面
ABCD
,
AB
垂直于
AD
和
BC
,
,且
.
M
是棱
SB
的中点.
(Ⅰ)求证:
面
SCD
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)设点
N
是直线
CD
上的动点,
MN
与面
SAB
所成的角为
,求
的最大值.
同类题4
如图,在棱长均为
的三棱柱
中,点
在平面
内的射影
为
与
的交点,
分别为
的中点.
(Ⅰ)求证:四边形
为正方形;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)在线段
上存在一点
,使得直线
与平面
没有公共点,求
的值.
同类题5
如图1,在
中,
,
,
分别为线段
,
的中点,
,
.以
为折痕,将
折起到图2中
的位置,使平面
平面
,连接
,
,设
是线段
上的动点,且
.
(1)证明:
平面
;
(2)试确定
的值,使得二面角
的大小为
.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明