刷题首页
题库
高中数学
题干
如图所示,平面
PAD
⊥平面
ABCD
,
ABCD
为正方形,△
PAD
是直角三角形,且
PA
=
AD
=2,
E
,
F
,
G
分别是线段
PA
,
PD
,
CD
的中点.求证:
PB
∥平面
EFG
.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-11 04:49:52
答案(点此获取答案解析)
同类题1
平面
的一个法向量为
,直线
的一个方向向量为
,若
,则
______.
同类题2
如图所示,四棱锥
S
﹣
ABCD
中,四边形
ABCD
为平行四边形,
BA
⊥
AC
,
SA
⊥
AD
,
SC
⊥
CD
.
(Ⅰ)求证:
AC
⊥
SB
;
(Ⅱ)若
AB
=
AC
=
SA
=3,
E
为线段
BC
的中点,
F
为线段
SB
上靠近
B
的三等分点,求直线
SC
与平面
AEF
所成角的正弦值.
同类题3
在△
ABC
中,∠
ABC
=45°,∠
ACB
=60°,△
ABC
绕
BC
旋转一周,记以
AB
为母线的圆锥为
M
1
,记以
AC
为母线的圆锥为
M
2
,
m
是圆锥
M
1
任一母线,则圆锥
M
2
的母线中与
m
垂直的直线有
________
条.
同类题4
在直四棱柱
中,底面是边长为
的菱形,
,
,过点
与直线
垂直的平面交直线
于点
,则三棱锥
的外接球的表面积为____.
同类题5
正方体
的棱长为1,
分别为
的中点.则( )
A.直线
与直线
垂直
B.直线
与平面
平行
C.平面
截正方体所得的截面面积为
D.点
和点
到平面
的距离相等
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明