刷题首页
题库
高中数学
题干
如下图,在空间直角坐标系
中,正四面体(各条棱均相等的三棱锥)
的顶点
分别在
轴,
轴,
轴上.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-27 08:56:00
答案(点此获取答案解析)
同类题1
在如图所示的多面体
ABCDE
,
AB
∥
DE
,
AB
⊥
AD
,△
ACD
是正三角形.
AD
=
DE
=2
AB
=2,
EC
=2
,
F
是
CD
的中点.
(1)求证
AF
∥平面
BCE
;
(2)求直线
AD
与平面
BCE
所成角的正弦值.
同类题2
已知点A(0,1,0),B(-1,0,-1),C(2,1,1),点P(x,0,z),若PA⊥平面ABC,则点P的坐标为( )
A.(1,0,-2)
B.(1,0,2)
C.(-1,0,2)
D.(2,0,-1)
同类题3
如图,在三棱柱
中,
是边长为4的正方形.平面
⊥平面
,
.
(1)求证:
⊥平面ABC;
(2)求二面角
的余弦值;
(3)证明:在线段
存在点
,使得
,并求
的值.
同类题4
如图,已知四棱锥
的底面为矩形,
,且
平面
分别为
的中点.
(1)求证:
平面
;
(2)求二面角
的余弦值.
同类题5
如图,四边形ABCD是边长为1的正方形,
,
,且MD=NB=1,E为BC的中点
1. 求异面直线NE与AM所成角的余弦值
2. 在线段AN上是否存在点S,使得ES
平面AMN?若存在,求线段AS的长;若不存在,请说明理由
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明