刷题首页
题库
高中数学
题干
如下图,在空间直角坐标系
中,正四面体(各条棱均相等的三棱锥)
的顶点
分别在
轴,
轴,
轴上.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-27 08:56:00
答案(点此获取答案解析)
同类题1
如图,在正方体
ABCD
﹣
A
1
B
1
C
1
D
1
中,棱长为2,
M
,
N
分别为
A
1
B
,
AC
的中点.
(1)证明:
MN
//
B
1
C
;
(2)求
A
1
B
与平面
A
1
B
1
CD
所成角的大小.
同类题2
如图,平面
平面
,
是等腰直角三角形,
,四边形
是直角梯形,
,
,
,
,
分别为
,
的中点.
(I)求证:
平面
.
(II)求直线
和平面
所成角的正弦值.
(III)能否在
上找一点
,使得
平面
?若能,请指出点
的位置,并加以证明;若不能,请说明理由.
同类题3
如图,在直三棱柱
中,
,
,
,侧棱
,
为
的中点.
(1)求异面直线
所成角的余弦值;
(2)若
为
上一动点,求
在何位置时
⊥
;
(3)求二面角
的余弦值.
同类题4
已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=
BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且
,
,求
的值.
同类题5
已知点A(0,1,0),B(-1,0,-1),C(2,1,1),点P(x,0,z),若PA⊥平面ABC,则点P的坐标为( )
A.(1,0,-2)
B.(1,0,2)
C.(-1,0,2)
D.(2,0,-1)
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明