刷题首页
题库
高中数学
题干
在
中,
,
,
,
是
中点(如图1).将
沿
折起到图2中
的位置,得到四棱锥
.
(1)将
沿
折起的过程中,
平面
是否成立?并证明你的结论;
(2)若
与平面
所成的角为60°,且
为锐角三角形,求平面
和平面
所成角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-08 08:08:23
答案(点此获取答案解析)
同类题1
如图,在直四棱柱
中,已知
,
.
(Ⅰ)求证:
;
(Ⅱ)设
,且
是
上一动点,当
平面
时,求三棱锥
的体积.
同类题2
如图,在三棱柱
中,
底面
,
,
、
分别是棱
、
的中点.
(Ⅰ)求证:
平面
.
(Ⅱ)若线段
上的点
满足平面
平面
,试确定点
的位置,并说明理由.
(Ⅲ)证明:
.
同类题3
如图,在直角梯形
中,
,
,
,
,
,点
在
上,且
,将
沿
折起,使得平面
平面
(如图).
为
中点.
(1)求证:
平面
;
(2)求四棱锥
的体积;
(3)在线段
上是否存在点
,使得
平面
?若存在,求
的值;若不存在,请说明理由.
同类题4
如图,在直三棱柱
中,
,
,
为侧棱
上一点,且
.
(1)求证:
平面
;
(2)求二面角
的大小.
同类题5
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,
∠BAD=120°,PA=
,∠ACB=90°,M是线段PD上的一点(不包括端点).
(1)求证:BC⊥平面PAC;
(2)求异面直线AC与PD所成的角的余弦值;
(3)若点M为侧棱PD中点,求直线MA与平面PCD所成角的正弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直