刷题首页
题库
高中数学
题干
四棱锥
中,底面
为矩形,
.侧面
底面
.
(1)证明:
;
(2)设
与平面
所成的角为
,求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-03-09 09:09:53
答案(点此获取答案解析)
同类题1
在直三棱柱
中,
,
,
,
,
分别为
的中点,
(1)求证:
平面
;
(2)求证:平面
平面ABD;
同类题2
如图,在平行六面体ABCD-A
1
B
1
C
1
D
1
中,底面ABCD是边长为a的正方形,侧棱AA
1
的长为b,∠A
1
AB=∠A
1
AD=120°.
(1)求AC
1
的长;
(2)证明:AC
1
⊥BD.
同类题3
如图,已知多面体
,
,
,
均垂直于平面
ABC
,
,
,
,
(1)证明:
平面
;
(2)求平面
与平面
所成的锐角的余弦值.
同类题4
如图,四棱锥
中,底面
是矩形,
平面
分别是
的中点,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)若二面角
是
的二面角,求四棱锥
的体积.
同类题5
如图,已知三棱柱
的侧棱与底面垂直,
,
,M是
的中点,
是
的中点,点
在
上,且满足
.
(1)证明:
.
(2)当
取何值时,直线
与平面
所成的角
最大?并求该角最大值的正切值.
(3)若平面
与平面
所成的二面角为
,试确定P点的位置.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明