刷题首页
题库
高中数学
题干
如图,三棱柱
中,侧面
底面
,
,且
,
O
为
中点.
(Ⅰ)证明:
平面
;
(Ⅱ)求直线
与平面
所成角的正弦值
上一题
下一题
0.99难度 解答题 更新时间:2018-09-14 04:22:22
答案(点此获取答案解析)
同类题1
如图1,在直角梯形
中,
,
,且
.现以
为一边向形外作正方形
,然后沿边
将正方形
翻折,使平面
与平面
垂直,
为
的中点,如图2.
(1)求证:
平面
;
(2)求证:
平面
;
(3)求三棱锥
的体积.
同类题2
如图,直角梯形
所在平面与以
为直径的圆所在平面垂直,点
在圆上,且
,
,
,
.
(1)证明:
平面
;
(2)求平面
与平面
所成锐二面角的余弦值.
同类题3
如图,在四棱锥
中,底面为直角梯形,
,
垂直于底面
,
,
分别为
的中点.
(1)求证:
四点共面,并证明
;
(2)求直线
与平面
所成角的大小.(用反三角函数值表示)
同类题4
如图,四面体
中,
,
,
为
的中点.
(1)证明:
;
(2)已知
是边长为2正三角形.
(Ⅰ)若
为棱
的中点,求
的大小;
(Ⅱ)若
为线段
上的点,且
,求四面体
的体积的最大值.
同类题5
如图1,在
中,
,
,
,
,
分别是
,
上的点,且
,
,将
沿
折起到
的位置,使
,如图2.
(1)求证:
平面
;
(2)线段
上是否存在一点
,使得平面
与平面
成
的角?若存在,求出
的值;若不存在,请说明理由.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直