刷题首页
题库
高中数学
题干
如图,四棱锥
的底面为矩形,
是四棱锥的高,
与平面
PAD
所成角为45º,
是
的中点,
E
是
BC
上的动点.
(1)证明:
PE
⊥
AF
;
(2)若
BC
=2
AB
,
PE
与
AB
所成角的余弦值为
,求二面角
D
-
PE
-
B
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-07 09:50:10
答案(点此获取答案解析)
同类题1
如图1,在平面内,ABCD是
且
的菱形,
和
都是正方形.将两个正方形分别沿
,
折起,使
与
重合于点
.设直线
过点
且垂直于菱形
所在的平面,点
是直线
上的一个动点,且与点
位于平面
同侧,设
(图2).
(1)设二面角
的大小为
,若
,求
的取值范围;
(2)在线段
上是否存在点
,使平面
平面
,若存在,求出
分
所成的比
;若不存在,请说明理由.
同类题2
如图(1)在等腰
中,D,E,F分别是AB,AC和BC边的中点,
,
现将
沿CD翻折成直二面角A-DC-
A.(如图(2))
(I)试判断直线AB与平面DEF的位置关系,
并说明理由;(II).求二面角E-DF-C的余弦值;
(III)在线段BC是否存在一点P,但AP
DE?证明你的结论.
同类题3
的方向向量为
,
的方向向量
,若
,则
等于( )
A.
B.
C.
D.
同类题4
三棱柱
中,侧棱与底面垂直,
,
,
分别是
的中点.
(1)求证:
平面
;
(2)求二面角
的余弦值.
同类题5
如图所示的多面体中,
EA
⊥平面
ABC
,
DB
⊥平面
ABC
,
AC
⊥
BC
,
CM
⊥
AB
,垂足为
M
,且
AE
=
AC
=2
,
BD
=2
BC
=4,
(1)求证:
CM
⊥
ME
;
(2)求二面角
A
﹣
MC
﹣
E
的余弦值.
(3)在线段
DC
上是否存在一点
N
,使得直线
BN
∥平面
EMC
,若存在,求出
的值;若不存在,请说明理由.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明