刷题首页
题库
高中数学
题干
已知直线PA⊥平面ABCD,∠BAD=90°,AB//DC//PM,AB=PA=2PM=2AD=2,CD = 3.
(1)若G为线段MD的中点,求证:MD⊥平面BGC ;
(2)求二面角B-MC-D 的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-28 10:00:04
答案(点此获取答案解析)
同类题1
如图,正方体
的棱长为
,点
为
的中点.
(1)证明:
平面
;
(2)求二面角
的余弦值.
同类题2
如图,在三棱柱
中,
底面
,△
ABC
是边长为
的正三角形,
,
D
,
E
分别为
AB
,
BC
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在线段
上是否存在一点
M
,使
平面
?说明理由.
同类题3
棱长为2的正方体
ABCD
﹣
A
1
B
1
C
1
D
1
中,
E
,
F
分别是
DD
1
,
DB
的中点,
G
在棱
CD
上,且
CG
CD
.
(1)证明:
EF
⊥
B
1
C
;
(2)求cos
,
.
同类题4
如图(1)在等腰
中,D,E,F分别是AB,AC和BC边的中点,
,
现将
沿CD翻折成直二面角A-DC-
A.(如图(2))
(I)试判断直线AB与平面DEF的位置关系,
并说明理由;(II).求二面角E-DF-C的余弦值;
(III)在线段BC是否存在一点P,但AP
DE?证明你的结论.
同类题5
在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)求异面直线AE与CD所成角的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明