刷题首页
题库
高中数学
题干
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=
,F为PC的中点,AF⊥PB.
(1)求PA的长;
(2)求二面角B﹣AF﹣D的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2014-05-30 10:17:46
答案(点此获取答案解析)
同类题1
如图,边长为
的正方形
和高为
的等腰梯形
所在的平面互相垂直,
,
,
与
交于点
,点
为线段
上任意一点.
(Ⅰ)求证:
平面
;
(Ⅱ)求
与平面
所成角的正弦值;
(Ⅲ)是否存在点
使平面
与平面
垂直,若存在,求出
的值,若不存在,说明理由.
同类题2
如图,正方体的棱长为1,
CB
′∩
BC
′=
O
,
求:(1)
AO
与
A
′
C
′所成角的度数;
(2)
AO
与平面
ABCD
所成角的正切值;
(3)证明平面
AOB
与平面
AOC
垂直.
同类题3
直三棱柱
中,底面
是边长为2的正三角形,
是棱
的中点,且
.
(1)若点
为棱
的中点,求异面直线
与
所成角的余弦值;
(2)若点
在棱
上,且
平面
,求线段
的长.
同类题4
如图,已知圆柱
,底面半径为1,高为2,
是圆柱的一个轴截面,动点
从点
出发沿着圆柱的侧面到达点
,其路径最短时在侧面留下的曲线记为
:将轴截面
绕着轴
,逆时针旋转
角到
位置,边
与曲线
相交于点
.
(1)当
时,求证:直线
平面
;
(2)当
时,求二面角
的余弦值.
同类题5
在正方体ABCD-A
1
B
1
C
1
D
1
中,E是棱BC的中点,试在棱CC
1
上求一点P,使得平面A
1
B
1
P⊥平面C
1
DE.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明