刷题首页
题库
高中数学
题干
如图,在四棱锥
中,已知
平面
,且四边形
为直角梯形,
,
,点
,
分别是
,
的中点.
(1)求证:
平面
;
(2)若点
为棱
上一点,且平面
平面
, 求证:
上一题
下一题
0.99难度 解答题 更新时间:2019-05-05 09:27:52
答案(点此获取答案解析)
同类题1
如图,在三棱锥
P
ABC
中,
AB
=
AC
,
D
为
BC
的中点,
PO
⊥平面
ABC
,垂足
O
落在线段
AD
上.已知
BC
=8,
PO
=4,
AO
=3,
OD
=2.
(1)证明:
AP
⊥
BC
;
(2)若点
M
是线段
AP
上一点,且
AM
=3.试证明平面
AMC
⊥平面
BMC
.
同类题2
将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
.
(Ⅰ)求证:DE⊥AC;
(Ⅱ)求DE与平面BEC所成角的正弦值;
(Ⅲ)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,不存在请说明理由.
同类题3
已知直线
的方向向量
,平面
的法向量
,则直线
与平面
的位置关系是
A.
B.
C.
D.
同类题4
四棱锥P-ABCD的底面是边长为2的正方形,PA⊥平面ABCD,E,F分别为线段AB,BC的中点.
(1)线段AP上一点M,满足
,求证:EM∥平面PDF;
(2)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
同类题5
如图,已知梯形
中,
,
,
,四边形
为矩形,
,平面
平面
.
(1)求证:
平面
;
(2)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明