刷题首页
题库
高中数学
题干
如图,在多面体
中,四边形
为直角梯形,
,
,四边形
为矩形,平面
平面
,
,
,点
为
的中点,点
为
的中点.
(1)求证:
;
(2)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 10:48:09
答案(点此获取答案解析)
同类题1
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,
BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点
(1)证明:直线EE1∥平面FCC1
(2)求:二面角B-FC1-C的余弦值.
同类题2
下列四个说法:
①若向量
是空间的一个基底,则
也是空间的一个基底.
②空间的任意两个向量都是共面向量.
③若两条不同直线
的方向向量分别是
,则
∥
∥
.
④若两个不同平面
的法向量分别是
且
,则
∥
.
其中正确的说法的个数是( )
A.1
B.2
C.3
D.4
同类题3
如图,在四棱锥
中,等边三角形
所在的平面垂直于底面
,
,
,
是棱
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)判断直线
与平面
的是否平行,并说明理由.
同类题4
如图
,在高为
的等腰梯形
中,
,且
,
,将它沿对称轴
折起,使平面
平面
,如图
,点
为
的中点,点
在线段
上(不同于
,
两点),连接
并延长至点
,使
.
(1)证明:
平面
;
(2)若
,求二面角
的余弦值.
同类题5
用空间向量解决下列问题:如图,在斜三棱柱
中,
是
的中点,
⊥平面
,
,
.
(1)求证:
;
(2)求二面角
的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明