刷题首页
题库
高中数学
题干
四棱锥
P
-
ABCD
中,侧面
PAD
⊥底面
ABCD
,底面
ABCD
是边长为2的正方形,又
PA
=
PD
,∠
APD
=60°,
E
、
G
分别是
BC
、
PE
的中点.
(1)求证:
AD
PE
;
(2)求二面角
E
-
AD
-
G
的正切值.
上一题
下一题
0.99难度 解答题 更新时间:2014-02-25 08:02:53
答案(点此获取答案解析)
同类题1
在四面体
中,已知棱
的长为
,其余各棱长都为1,则二面角
的平面角的余弦值为( )
A.
B.
C.
D.
同类题2
如图,
,
,
,
是圆柱底面圆周的四等分点,
是圆心,
,
,
与底面
垂直,底面圆的直径等于圆柱的高.
(1)证明:
;
(2)求二面角
的大小.
同类题3
如图所示,在正方体
中,二面角
的大小是( )
A.
B.
C.
D.
同类题4
在正四棱柱
中,底面边长为1,
与底面
所成的角的大小为
,如果平面
与底面
ABCD
所成的二面角是锐角,则此二面角大小为______(结果用反三角函数值表示).
同类题5
如图,在圆锥
中,已知
,⊙O的直径
,点C在底面圆周上,且
,
为
的中点.
(Ⅰ)证明:
∥平面
;
(Ⅱ)证明:平面
平面
;
(Ⅲ)求二面角
的正弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
二面角
求二面角
线面垂直证明线线垂直