刷题宝
  • 刷题首页
题库 高中数学

题干

如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.

(Ⅰ)求证:AB⊥平面ADC;

(Ⅱ)若AD=2,直线CA与平面ABD所成角的正弦值为,求二面角E-AD-C的余弦值.

上一题 下一题 0.99难度 解答题 更新时间:2019-11-28 04:13:04

答案(点此获取答案解析)

同类题1

如图,三角形PCD所在的平面与等腰梯形ABCD所在的平面垂直,AB=AD=CD,AB∥CD,CP⊥CD,M为PD的中点.
(1)求证:AM∥平面PBC;
(2)求证:BD⊥平面PBC.

同类题2

如图,在四棱锥中,平面,底面是菱形.

(1)求证:平面;
(2)若,求与平面所成角的正弦值.

同类题3

如图,在四棱锥中,底面为正方形,侧面为正三角形,侧面底面,为的中点.

(1)求证:平面;
(2)求二面角的正弦值.

同类题4

如图,已知长方体中,,,则直线与平面所成的角大小为______.

同类题5

底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.

(1)求证:;
(2)求二面角的正弦值.
相关知识点
  • 空间向量与立体几何
  • 点、直线、平面之间的位置关系
  • 直线、平面垂直的判定与性质
  • 线面垂直的判定
  • 证明线面垂直
  • 求二面角
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)