刷题首页
题库
高中数学
题干
如图所示,在几何体
中,四边形
是菱形,
平面
,
,且
,
.
(1)证明:平面
平面
;
(2)若二面角
是直二面角,求异面直线
与
所成角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-05 10:52:55
答案(点此获取答案解析)
同类题1
如图所示,在四棱锥
中,四边形
为矩形,
为等腰三角形,
,平面
平面
,且
分别为
的中点.
(1)证明:
平面
;
(2)证明:平面
平面
;
(3)求三棱锥
的体积.
同类题2
如下图,在三棱锥
中,
,
底面
,
,且
.
(1)若
为
上一点,且
,证明:平面
平面
.
(2)若
为棱
上一点,且
平面
,求三棱锥
的体积.
同类题3
如图四棱锥
中,
底面
,
是边长为2的等边三角形,且
,
,点
是棱
上的动点.
(I)求证:平面
平面
;
(Ⅱ)当线段
最小时,求直线
与平面
所成角的正弦值.
同类题4
在直三棱柱
中,
,
,过
的截面
与面
交于
.
(1)求证:
.
(2)若截面
过点
,求证:
面
.
(3)在(2)的条件下,求
.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
面面垂直的判定
证明面面垂直