刷题首页
题库
高中数学
题干
如图,四棱锥
中,平面
SAD
平面
SAB
,
BC
SA
,
,
,
.
(1)证明:在线段
上是否存在点
,使得
平面
;
(2)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-07 06:08:58
答案(点此获取答案解析)
同类题1
在直三棱柱
中,
,点
分别为
的中点.
(1)求证:
平面
;
(2)求三棱锥
的体积(锥体的体积公式
,其中
为底面面积,
为高)
同类题2
正方体
ABCD
A
1
B
1
C
1
D
1
中,
E
为线段
B
1
D
1
上的一个动点,则下列结论中正确的是________.(填序号)
①
AC
⊥
BE
;
②
B
1
E
∥平面
ABCD
;
③三棱锥
E
ABC
的体积为定值;
④直线
B
1
E
⊥直线
BC
1
.
同类题3
如图,在四棱锥
中,底面
是平行四边形,
,
,截面
是等边三角形,
M
,
N
分别是
,
的中点.
(1)求证:
平面
;
(2)若
,
,求三棱锥
的体积.
同类题4
如下图,四梭锥
中,
⊥底面
,
,
为线段
上一点,
,
为
的中点.
(I)证明:
平面
;
(Ⅱ)求直线
与平面
所成角的正弦值.
同类题5
如图,直四棱柱
中,底面ABCD是
的菱形,A
,AB=2,点E在棱C
上,点F是棱
的中点;
(Ⅰ)若
E
是
CC
1
的中点,求证:
EF
∥平面
A
1
BD
;
(Ⅱ)求出
CE
的长度,使得
A
1
﹣
BD
﹣
E
为直二面角.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行