刷题首页
题库
高中数学
题干
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,
,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2014-05-14 05:17:23
答案(点此获取答案解析)
同类题1
如图,已知四棱锥
中,
平面
,底面
为直角梯形,
,
,
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)在侧棱
上是否存在点
,使得
平面
,若存在,确定点
位置;若不存在,说明理由.
同类题2
如图,在斜三棱柱
中,
为
上的点.当
为何值时,
平面
?
同类题3
如图的几何体中,
.底面
是正三角形,
.四边形
是矩形,且平面
底面
.
(Ⅰ)
在
上运动,当
在何处时,有
平面
,并且说明理由;
(Ⅱ)当
平面
时,求二面角
余弦值.
同类题4
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.
(1)求证:MN∥BC;
(2)若M,N分别为PB,PC的中点,
①求证:PB⊥DN;
②求直线AM和直线CD所成角的余弦值.
同类题5
如图,四边形
ABCD
为矩形,
DA
⊥平面
ABE
,
AE
=
EB
=
BC
=2,
BF
⊥平面
ACE
,且点
F
在
CE
上.
(1)求证:
AE
⊥
BE
;
(2)求三棱锥
D
—
AEC
的体积;
(3)设点
M
在线段
AB
上,且满足
AM
=2
MB
,试在线段
CE
上确定一点
N
,
使得
MN
∥平面
DAE
.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件