刷题首页
题库
高中数学
题干
如图,在四棱锥
中,底面
是正方形,
底面
,
,
是
的中点.
(1)求四棱锥
的体积;
(2)求直线
与平面
所成角的正切值;
(3)证明:
平面
.
上一题
下一题
0.99难度 解答题 更新时间:2017-07-09 12:19:24
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中, 平面
平面
,
.
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值;
(3)在棱
上是否存在点
,使得
平面
?若存在, 求
的值;若不存在, 说明理由.
同类题2
如图,在△
ABC
中,∠
B
=90°,
AB
=
BC
=2,
P
为
AB
边上一动点,
PD
∥
BC
交
AC
于点
D
,现将△
PDA
沿
PD
翻折至△
PDA
1
,
E
是
A
1
C
的中点.
(1)若
P
为
AB
的中点,证明:
DE
∥平面
PBA
1
.
(2)若平面
PDA
1
⊥平面
PDA
,且
DE
⊥平面
CBA
1
,求四棱锥
A
1
﹣
PBCD
的体积.
同类题3
如图,在直三棱柱
中,
,
,
,
,点
是
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
与平面
所成的锐二面角的余弦值.
同类题4
如图,菱形
的边长为
,
,
,将菱形
沿对角线
折起,得到三棱锥
,点
是棱
的中点,
.
(
)求证:
平面
.
(
)求证:平面
平面
.
(
)求三棱锥
的体积.
同类题5
在四棱锥
P
﹣
ABCD
中,
DA
⊥平面
PAB
,
DC
∥
AB
,
DA
=
DC
=2,
AB
=
AP
=4,∠
PAB
=120°,
M
为
PB
中点.
(Ⅰ)求证:
CM
∥平面
PAD
;
(Ⅱ)求二面角
M
﹣
AC
﹣
B
的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
求线面角