刷题首页
题库
高中数学
题干
已知在四棱锥
中,底面
是菱形,
,
平面
,
分别是
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)若
,求平面
与平面
所成锐二面角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2017-09-05 07:43:44
答案(点此获取答案解析)
同类题1
如图,在三棱柱
中,
平面
,
为
边上一点,
,
.
(1)证明:平面
平面
.
(2)若
,试问:
是否与平面
平行?若平行,求三棱锥
的体积;若不平行,请说明理由.
同类题2
如图,四边形ABCD为正方形,
平面ABCD,E、F分别为BC和PC的中点
(1)求证:EF//平面PBD;
(2)如果AB=PD,求EF与平面ABCD所成角的正切值
同类题3
如图,在三棱锥
中,
.
为
的中点,
为
上一点,且
平面
.
求证:(1)直线
平面
;
(2)平面
平面
.
同类题4
在如图所示的几何体中,四边形
CDEF
为正方形,四边形
ABCD
为等腰梯形,
AB
∥
CD
,
AC
=
,
AB
=2
BC
=2,
AC
⊥
FB
.
(1)求证:
AC
⊥平面
FBC
;
(2)求四面体
FBCD
的体积;
(3)线段
AC
上是否存在点
M
,使
EA
∥平面
FDM
?若存在,请说明其位置,并加以证明;若不存在,请说明理由.
同类题5
如图,在直三棱柱ABC—A
1
B
1
C
1
中,点M是A
1
B的中点,点N是B
1
C的中点,连接MN。
(I)证明:MN//平面ABC;
(II)若AB=1,
,点P是CC
1
的中点,求四面体B
1
—APB的体积。
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
求二面角