刷题首页
题库
高中数学
题干
在直三棱柱
ABC
-
A
1
B
1
C
1
中,
AB
=
AC
,
E
是
BC
的中点,求证:
(Ⅰ)平面
AB
1
E
⊥平面
B
1
BCC
1
;
(Ⅱ)
A
1
C
//平面
AB
1
E
.
上一题
下一题
0.99难度 解答题 更新时间:2017-09-25 10:40:50
答案(点此获取答案解析)
同类题1
如图所示多面体
,其底面
为矩形且
,
,四边形
为平行四边形,点
在底面
内的投影恰好是
的中点.
(1)已知
为线段
的中点,证明:
∥平面
;
(2)若二面角
大小为
,求直线
与平面
所成角的正弦值.
同类题2
如图,在三棱柱
中,
平面
,
为
边上一点,
,
.
(1)证明:平面
平面
.
(2)若
,试问:
是否与平面
平行?若平行,求三棱锥
的体积;若不平行,请说明理由.
同类题3
如图,正方形
与矩形
所在平面互相垂直,
,
为
的中点.
(1)求证:
平面
;
(2)求三棱锥
的体积.
同类题4
如图,在三棱柱
与四棱锥
的组合体中,已知
平面
,四边形
是平行四边形,
,
,
,
,设
是线段
中点.
(1)求证:
平面
;
(2)证明:平面
平面
;
(3)求四棱锥
的体积.
同类题5
如图,四棱锥
P-ABCD
底面为正方形,
PD
⊥平面
ABCD,PD
=
AD
,点
M
为线段
PA
上任意一点(不含端点),点N在线段
BD
上,且
PM=DN.
(1)求证:直线
MN
∥平面
PCD
.
(2)若点
M
为线段
PA
的中点,求直线
PB
与平面
AMN
所成角的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
证明线面垂直