刷题首页
题库
高中数学
题干
如图,在底面是矩形的四棱锥
P
‒
ABCD
中,
PA
⊥平面
ABCD
,
PA
=
AB
= 2,
BC
= 4,
E
是
PD
的中点,
(1)求证:
平面
EAC
;
(2)求证:平面
PDC
⊥平面
PAD
;
(3)求多面体
的体积.
上一题
下一题
0.99难度 解答题 更新时间:2017-10-14 09:05:15
答案(点此获取答案解析)
同类题1
如图,在正方体
中,
是
的中点.
(1)求证:
平面
;
(2)求异面直线
和
所成角的大小.
同类题2
在正四棱锥
中,
E
,
F
分别为棱
VA
,
VC
的中点.
(1)求证:
EF
∥平面
ABCD
;
(2)求证:平面
VBD
⊥平面
BEF
.
同类题3
如图,四棱柱
ABCD
-
A
1
B
1
C
1
D
1
的底面为菱形,
AA
1
⊥底面
ABCD
,∠
BAD
=120°,
AB
=2,
E
,
F
分别为
CD
,
AA
1
的中点.
(Ⅰ)求证:
DF
∥平面
B
1
AE
;
(Ⅱ)若直线
AD
1
与平面
B
1
AE
所成角的正弦值为
,求
AA
1
的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角
B
1
-
AE
-
D
1
的正弦值.
同类题4
如图,多面体PABCD的直观图及三视图如图所示,E、F分别为PC、BD的中点.
(I)求证:EF∥平面PAD;
(II)求证:平面PDC⊥平面PAD.
同类题5
如图,在三棱锥P-ABC中,PA⊥底面ABC,
.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(1)求证:MN∥平面BDE;
(2)求二面角C-EM-N的正弦值;
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
证明面面垂直