刷题首页
题库
初中数学
题干
如图,在平面直角坐标系中,有一Rt△
ABC
,且点
A
(-1,3),
B
(-3,-1),
C
(-3,3),已知△
A
1
AC
1
是由△
ABC
旋转得到的.
(1)旋转中心的坐标是________,旋转角的度数是________.
(2
)以(1)中的旋转中心为中心,分别画出△
A
1
AC
1
顺时针旋转90°,180°的三角形.
(3)利用变换前后所形成的图案,可以证明的定理是
.
上一题
下一题
0.99难度 解答题 更新时间:2017-07-17 09:29:51
答案(点此获取答案解析)
同类题1
如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转90°得到长方形FGCE,连接AF.通过用不同方法计算梯形ABEF的面积可验证勾股定理,请你写出验证的过程.
同类题2
阅读下列材料:
(材料)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形我们就能证明勾股定理:
.
(请回答)如图是任意符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?
同类题3
如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,若知道图中阴影部分的面积,则一定能求出( )
A.直角三角形的面积
B.最大正方形的面积
C.较小两个正方形重叠部分的面积
D.最大正方形与直角三角形的面积和
同类题4
三国时期,魏国数学家刘徽为古籍《九章算术》作注释时,指出用“出入相补法”验证勾股定理,如图所示,请加以说明.
同类题5
下图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( )
A.黄金分割
B.垂径定理
C.勾股定理
D.正弦定理
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理的证明方法