刷题首页
题库
初中数学
题干
如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为( )
A.5
B.6
C.7
D.12
上一题
下一题
0.99难度 填空题 更新时间:2013-04-16 04:08:46
答案(点此获取答案解析)
同类题1
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为
a
,较短直角边长为
b
,若
,大正方形的面积为13,则小正方形的面积为( )
A.3
B.4
C.5
D.6
同类题2
我国古代伟大的数学家刘徽将直角三角形分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图,若
a
=4,
b
=6,则该直角三角形的周长为( )
A.18
B.20
C.24
D.26
同类题3
如图是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:下面图中的三个三角形均是直角三角形,围成的梯形是直角梯形)
同类题4
三国时期,魏国数学家刘徽为古籍《九章算术》作注释时,指出用“出入相补法”验证勾股定理,如图所示,请加以说明.
同类题5
我们刚刚学习的勾股定理是一个基本的平面几何定理,也是数学中最重要的定理之一.勾股定理其实有很多种证明方法.下图是1876年美国总统伽菲尔德(
Garfield
)证明勾股定理所用的图形:以
、
为直角边,以
为斜边作两个全等的直角三角形,把这两个直角三角形拼成如图所示梯形形状,使
、
、
三点在一条直线上.
(1)求证:∠
90°;
(2)请你利用这个图形证明勾股定理(即证明:
).
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理的证明方法