刷题首页
题库
高中数学
题干
在梯形
中,
,
于点
,
,
,将
沿着
折起,使得
点到
点的位置,
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)
为
上一点,且
,求证:
平面
.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-04 08:10:19
答案(点此获取答案解析)
同类题1
在梯形
中(图1),
,
,
,过
、
分别作
的垂线,垂足分别为
、
,且
,将梯形
沿
、
同侧折起,使得
,且
,得空间几何体
(图2).直线
与平面
所成角的正切值是
.
(1)求证:
平面
;
(2)求多面体
的体积.
同类题2
如图, 在直三棱柱
ABC
-
A
1
B
1
C
1
中,
AC
=3,
BC
=4,AB=5,
AA
1
=4,点
D
是
AB
的中点,
(I)求证:
AC
1
//平面
CDB
1
;
(II)求二面角C
1
-AB-C的平面角的正切值.
同类题3
已知四棱台
中,
平面
ABCD
,四边形
ABCD
为平行四边形,
,
,
,
,
E
为
DC
中点.
(1)求证:
平面
;
(2)求证:
;
(3)求三棱锥
的高.
(注:棱台的两底面相似)
同类题4
如图,在四棱锥
中,四边形
是菱形,
,平面
平面
在棱
上运动.
(1)当
在何处时,
平面
;
(2)当
平面
时,求直线
与平面
所成角的正弦值.
同类题5
如图,正三棱柱
中,侧棱
,
,
分别为棱
的中点,
分别为线段
和
的中点.
(1)求证:直线
平面
;
(2)求二面角
的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
证明面面垂直