刷题首页
题库
高中数学
题干
如图甲所示,
是梯形
的高,
,
,
,先将梯形
沿
折起如图乙所示的四棱锥
,使得
.
(1)在棱
上是否存在一点
,使得
平面
?若存在,请求出
的值,若不存在,请说明理由;
(2)点
是线段
上一动点,当直线
与
所成的角最小时,求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-23 10:39:25
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,底面
是边长为2的菱形,
,侧面
为正三角形,侧面
底面
,
、
分别为棱
、
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)在棱
上是否存在一点
,使得
平面
?若存在,求
的值;若不存在,请说明理由.
同类题2
直三棱柱
中,
,
,
,点
是线段
上的动点.
(1)当点
是
的中点时,求证:
平面
;
(2)线段
上是否存在点
,使得平面
平面
?若存在,试求出
的长度;若不存在,请说明理由.
同类题3
如图,在三棱柱
中,
是边长为2的菱形,且
,
是矩形,
,且平面
平面
,
点在线段
上移动(
不与
重合),
是
的中点.
(1)当四面体
的外接球的表面积为
时,证明:
.平面
(2)当四面体
的体积最大时,求平面
与平面
所成锐二面角的余弦值.
同类题4
已知,如图甲,正方形
的边长为4,
,
分别为
,
的中点,以
为棱将正方形
折成如图乙所示,且
,点
在线段
上且不与点
,
重合,直线
与由
,
,
三点所确定的平面相交,交点为
.
(1)若
,试确定点
的位置,并证明直线
平面
;
(2)若
,求点
到平面
的距离.
同类题5
如图,在五面体
中,底面
为矩形,
,
,过
的平面交棱
于
,交棱
于
.
(1)证明:
平面
;
(2)若
,求平面
与平面
所成锐二面角的大小.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
证明面面平行