刷题首页
题库
高中数学
题干
如图,在四棱锥
中,AB⊥AD,AB∥CD,CD=3AB,平面
平面ABCD,M是线段AD上一点,AM=AB,
.
(1)证明:
平面SMC;
(2)若SB与平面ABCD所成角为
,N为棱SC上的动点,当二面角
为
时,求
的值。
上一题
下一题
0.99难度 解答题 更新时间:2016-07-27 04:34:41
答案(点此获取答案解析)
同类题1
如图,在三棱锥P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.
(Ⅰ)求证:DE∥平面PA
A.
(Ⅱ)求证:AB⊥PB;
(Ⅲ)若PC=BC,求二面角P—AB—C的大小.
同类题2
如图,直三棱柱
中,
,
是棱
的中点,
(1)证明:
(2)求二面角
的大小.
同类题3
(2015秋•盐城校级月考)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为矩形,E,F分别为棱AB,PC的中点
(1)求证:PE⊥BC;
(2)求证:EF∥平面PAD.
同类题4
如图,四棱锥
中,底面
为平行四边形,
平面
,
是棱
的中点,且
,
.
(1)求证:
平面
;
(2)求二面角
的大小;
(3)如果
是棱
上一点,且直线
与平面
所成角的正弦值为
,求
的值.
同类题5
如图,在四棱锥
中,底面ABCD是菱形,PA=PB,且侧面PAB⊥平面ABCD,点E是AB的中点。
(Ⅰ)求证:CD∥平面PAB;
(Ⅱ)求证:PE⊥AD。
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
空间点、直线、平面之间的位置关系
异面直线所成的角
证明异面直线垂直