刷题首页
题库
初中数学
题干
为比较
与
的大小,小亮进行了如下分析后作一个直角三角形,使其两直角边的长分别为
与
,则由的股定理可求得其斜边长为
.根据“三角形三边关系”,可得
.小亮的这一做法体现的数学思想是( )
A.分类讨论思想
B.方程思想
C.类比思想
D.数形结合思想
上一题
下一题
0.99难度 单选题 更新时间:2019-12-01 07:39:00
答案(点此获取答案解析)
同类题1
如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.
(1)你能用只含a,b的代数式表示S
△
ABC
,S
△
C'A'D'
和S
直角梯形
A'D'BA
吗?能用只含c的代数式表示S
△
ACA'
吗?
(2)利用(1)的结论,你能验证勾股定理吗?
同类题2
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为
a
,较短直角边长为
b
,若
,大正方形的面积为13,则小正方形的面积为( )
A.3
B.4
C.5
D.6
同类题3
用4个全等的直角三角形与1个小正方形拼成的正方形图案如图所示,已知大正方形的面积为49,小正方形的面积为9,若用x,y表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是( )
A.x
2
+y
2
=49
B.x-y=3
C.2xy+9=49
D.x+y=13
同类题4
我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是( )
A.
B.
C.
D.
同类题5
如图(1)是用硬板纸做成的两个全等的直角三角形,两直角边的长分别为
和
,斜边长边
,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图,并用这个图形证明勾股定理;
(2)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明)
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理的证明方法